Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion
نویسندگان
چکیده
Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM) has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.
منابع مشابه
A Bayesian Data Fusion Approach to Spatio-Temporal Fusion of Remotely Sensed Images
Remote sensing provides rich sources of data for the monitoring of land surface dynamics. However, single-sensor systems are constrained from providing spatially high-resolution images with high revisit frequency due to the inherent sensor design limitation. To obtain images high in both spatial and temporal resolutions, a number of image fusion algorithms, such as spatial and temporal adaptive...
متن کاملAn Integrated Framework for the Spatio-Temporal-Spectral Fusion of Remote Sensing Images
Remote sensing satellite sensors feature a tradeoff between the spatial, temporal, and spectral resolutions. In this paper, we propose an integrated framework for the spatio–temporal– spectral fusion of remote sensing images. There are two main advantages of the proposed integrated fusion framework: it can accomplish different kinds of fusion tasks, such as multiview spatial fusion, spatio–spec...
متن کاملSpatio-temporal distribution of off-shore ships in the Pars Special Economic Energy Zone based on satellite imagery
Special Economic Zones (SEZs) are areas controlled by specific legislations so as toattain economic prosperity. These zones are commonly established and controlled bygovernment officials and are primarily characterized by growing population and developingtransport infrastructure. One relevant case is the Pars Special Economic Energy Zone(PSEEZ) situated in the south of Iran, on the northern sho...
متن کاملModeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and land surface temperature (LST) calculation. However, their spatial resolu...
متن کاملSpatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning
Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017